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Abstract

Background: Macrophages may concentrate ultrasound contrast agents and exhibit selective adhesion to activated
endothelium. The present study investigates in mice the potential of perfluorohexane (PFH) loaded macrophages to
act as ultrasound contrast agent with high reflectivity and specifically targeted at (atherosclerotic) vascular lesions.

Methods: Lung passage was evaluated with a mouse echo scanner after injection, at a slow pace or as a bolus, of
varying doses of PFH-loaded and unloaded bone marrow macrophages (BMM) into the jugular vein. The interaction
of PFH-loaded and unloaded BMM with TNF-a stimulated carotid artery endothelium after tail vein injection was
assessed by means of intravital microscopy.

Results: High doses of jugular vein injected PFH-loaded BMM were visible with ultrasound in the pulmonary artery
and detectable in the carotid artery. At intravital microscopy, tail vein injected BMM exhibited rolling and adhesion
behavior at the TNF-a stimulated carotid endothelium, similar to that of native blood leukocytes. Rolling behavior

was not different between PFH-loaded and unloaded BMM (p = 0.38).

Conclusion: In vivo, perfluorohexane loaded macrophages pass the pulmonary circulation and appear on the
arterial side. Moreover, they roll and adhere selectively to activated endothelium under physiological flow
conditions. These findings indicate that perfluorohexane loaded BMM could be used to study processes in vivo
where endothelial activation plays a role, such as atherosclerosis.
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Background

Atherosclerosis is an inflammatory disease and is initiated
by the activation and dysfunction of endothelial cells by
mediators, such as hyperlipidemia and shear stress [1,2].
Predilection sites for the development of atherosclerotic
plaques are areas opposite to the flow divider in such
branch points as the carotid artery bulb, where blood flow
is disturbed, local wall shear stress is bidirectional and
average wall shear stress is low [3]. Dysfunctional endothe-
lial cells express pro-inflammatory adhesion molecules,
which subsequently mediate initial attachment, restrained
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rolling and firm adhesion of monocytes and other leuko-
cytes to the activated endothelium. Both initial attachment
and rolling are predominantly regulated by selectins and
their respective carbohydrate ligands [4]. Monocytes may
detach and be released back into the blood stream, but
may also invade the vessel wall, transform into macro-
phages and scavenge inflammatory, necrotic material and
fat to become foam cells.

Early detection of athero-prone sites might help to iden-
tify people at risk for cardiovascular events like stroke and
myocardial infarction. Ultrasound molecular imaging uti-
lizes ultrasound contrast agents [5] that carry specific adhe-
sion molecules (e.g. antibodies) on their surface, facilitating
binding to such specific targets as atherogenic areas on
the arterial wall [6-9]. In the past decade, experimental
and clinical validation studies have shown that for the
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microcirculation targeted ultrasound contrast agents, such
as echogenic liposomes, microbubbles and perfluorocarbon
emulsions, do improve visualization of specific structures
[10-13]. These results have led to high expectations for
dedicated molecular ultrasound imaging of activated endo-
thelium of large and middle-sized arteries. The optimistic
view emanating from many of the studies on adhesion
properties of ultrasound contrast agents [14-16], however,
should be interpreted with care [17]. Studies were usually
performed in flow chambers after static incubation or
under unphysiologically low shear stress (0.02-0.5 Pa) con-
ditions [7,9,18,19]. Moreover, the contrast agents used ex-
hibited low capture and weak adhesion efficiency even at
low shear stresses. Especially in small rodents, the adher-
ence requirements for ultrasound contrast agents are very
demanding. In small animals, mean wall shear stress in the
common carotid artery is about 8 Pa [20,21], which is sub-
stantially higher than the 1.2 Pa reported for the human ca-
rotid artery [22,23].

Considering the difficulties related to adhesion encoun-
tered with molecularly targeted contrast agents in vivo, cir-
culatory cells like monocytes may serve as a potential
alternative. Monocytes are naturally equipped to adhere
selectively to activated endothelium and to resist, while ad-
hering, physiological shear stresses in large- and middle-
sized arteries. Studies with noninvasive techniques like
PET/CT have demonstrated the feasibility of monocytes as
a contrast agent vehicle for in vivo imaging [24,25].

We previously reported on the in vitro potential of
monocytes to act as a targeted vehicle for ultrasound con-
trast agents [26]. Using murine primary bone marrow de-
rived macrophages (BMM), we demonstrated that the
echogenicity of these cells is dose-dependently related to
their perfluorohexane uptake while loaded BMM maintain
their functional adhesive properties under static conditions.

Perfluorohexane emulsions have a specific mass of
1.7 kg/l, a boiling point of 56°C (http://www.rsc.org/learn-
chemistry/wiki/Substance:Perfluorohexane), and a sound
speed of 521 m/s at 37°C [27], and, therefore, an acous-
tic impedance of 0.875 MRayl. Considering the acoustic
impedance mismatch between perfluorohexane in its fluid
phase and blood or tissue (about 1.5 MRayl), perfluorohex-
ane (PFH) exhibits substantial reflectivity in vivo, though
lower than air filled contrast bubbles. The small particle
size of PFH emulsions with an average diameter on the
order of 0.3 pm [28,29] further limits reflectivity, unless
local site-specific surface accumulation is achieved [30]. In
our approach, volume accumulation of PFH emulsions is
achieved by phagocytosis where the conglomerate within a
macrophage exhibits enhanced reflectivity. It should be
noted, that PFH emulsions remain in the fluid state under
normal ultrasound exposure [31,32], and, hence, unlike
microbubbles, do not suffer from gas diffusion, nor are
they sensitive to (repetitive) ultrasound interrogation.

Page 2 of 8

Preparation of the emulsions one day ahead and a 3 hour
loading process do not change the emulsions characteris-
tics [26], while viscoelastic damping by the macrophage
does not appear to alter ultrasound reflectivity [33]. More-
over, 24 hours after loading no significant changes in
BMM adhesive properties and in emulsion echogenicity
could be observed [26]. The relatively long lifespan may
allow for a prolonged time for site-specific accumulation
of PFH loaded macrophages to achieve local echo en-
hancement, superseding the reflectivity of surrounding
blood and tissue.

As monocytes in vitro are stimulated to convert into
macrophages and are allowed to phagocytose PFH emul-
sions, they may become larger and stiffer. Leukocytes
and macrophages have a cell size considerably larger
than the diameter of capillaries [34]. Despite the mis-
match in size, those large white blood cells are capable
to pass the microcirculation by deformation, although
the passage time is larger than that of blood plasma or
red blood cells [35]. In blood, leukocytes are abundantly
available, showing similar adhesion behavior, and, hence,
are the first choice to compare with (loaded) macro-
phages, especially because they are able to pass the lung
continuously.

In the present series of experiments, we aim to obtain
proof of principle for the applicability of PFH loaded
BMM as an ultrasound contrast agent in vivo. In vitro
we study whether loaded BMM are different in diameter
compared to blood leukocytes. In mice studies we inves-
tigate in vivo whether PFH loaded BMM (1) are able to
pass the pulmonary circulation, (2) interact with cyto-
kine stimulated endothelial cells of the carotid artery to
achieve selective accumulation iz vivo, and (3) show se-
lective adhesion to stimulated endothelium under realis-
tic blood flow conditions.

Materials and methods

Preparation of PFH emulsions

The PFH emulsions were composed of 40% v/v PFH
(C6F14; Sigma-Aldrich, Steinheim, Germany) and a surfac-
tant co-mixture (0.5% w/v) as previously described [26].
The selected surfactant concentration governs the even-
tual size distribution of the emulsion, i.e. an average diam-
eter of 0.3 pm and a similar distribution width [29]. To
remove liposomes and non-incorporated lipids the sam-
ples were washed and centrifuged at 2000 g for 30 minutes.
PFH emulsions were resuspended in 2 mL phosphate buf-
fer saline (PBS) and kept under nitrogen at 4°C until use.

Loading of BMM with PFH emulsions

BMM were obtained from C57/BL6 mice and cultured
according to standard procedures [36,37]. BMMs were
seeded in 6-well plates (2x10°/well) and left overnight to
adhere at 37°C in a 5% CO, incubator. The next day,
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cells were incubated with 2% or 4% v/v PFH emulsions
for 3 hours at 37°C in a 5% CO, incubator. After PFH
loading, BMM were washed to remove non-incorporated
PFH emulsions. Next, cells were lifted using 4 mg/mL
lidocaine dissolved in PBS-10 mM EDTA according to
standard procedures [38]. Cells were centrifuged at
300 g for 5 min at 4°C, which removed any residual
emulsions and cell debris as verified by FACS analysis
(fluorescence-activated cell sorting). Cell viability was
monitored microscopically and by counting the number
of viable cells upon harvesting. The loaded BMM were
kept on ice (4°C) until the experiment on the same day.

Cell diameter distribution

Loaded (2% v/v PFH) and unloaded (0% v/v PFH) BMM
were dispersed in phosphate buffer solution (PBS) and
fixated in a solution of 3% paraformaldehyde (Merck
VWR, Amsterdam, the Netherlands) for 15 minutes. Fix-
ated BMM were centrifuged at 300 g for 5 min at 4°C,
dissolved in PBS and added to a Petri dish well for diam-
eter distribution measurements. After allowing the
BMM to adhere to the bottom, Petri-dishes were dia-
metrically scanned with a microscope (Nikon Eclipse
E800, Japan) with a 20x objective in an upright position.
Murine blood smears, stained with May-Grunwald solu-
tion and Giemsa solution, were used as reference in
leukocyte typing (neutrophils, lymphocytes and mono-
cytes) and in the determination of the diameter distribu-
tions. For each of the above conditions, 200 cells were
evaluated and measured using Image Pro Plus (Media
Cybernetics Inc., Silver Spring, MD, USA).

Animals

Male and female C57/BL6 ] mice (16 to 20-week old, 20 to
30 grams) were obtained from Charles River Laboratories
(Maastricht, the Netherlands, and Sulzfeld Germany). Mice
were fed a normal diet and were allowed to drink water ad
libitum. The experiments were approved by the insti-
tutional animal care and use committee of Maastricht
University, Maastricht, the Netherlands and the Landesamt
fir Natur, Umwelt und Verbraucherschutz Nordrhein-
Westfalen, Germany. Mice were anesthetized by subcu-
taneous administration of a mixture of xylazine (15 mg
Xylazin/kg body weight; Ceva Sante Animale, Naaldwijk,
the Netherlands) and ketamine (75 mg Nimatek/kg body
weight; Eurovet, Cuijk, the Netherlands).

Echo enhancement in blood

Pilot studies were conducted to study BMM echo en-
hancement in vivo. For this purpose, 15 mice were anes-
thetized, the chest was shaved, and a venous line (PE10)
was inserted into the right jugular vein. Through this
catheter, doses of 2 to 15 million of unloaded or loaded
(2% or 4% v/v) BMM, suspended in 150 ul RPMI-1640
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with 2% fetal calf serum and 5 U/ml heparin, were admin-
istered manually either as a bolus injection (1 s) or by slow
infusion (30 s). Ultrasound imaging was performed with
an ultra-high frequency (30 MHz) mechanical sector im-
aging system (Vevo 770, Visual Sonics, Toronto, Ontario,
Canada) with an axial resolution of 55 pm. The ultrasound
system was operated in standard B-mode with the emission
power setting at 100%. The probe, fixed in a mechanical
arm, was placed on the chest (transmission gel applied) to
provide either a simultaneous view of the aorta, pulmonary
artery and left ventricle or a view of the carotid artery.
Evaluation of the Vevo 770 brightness calibration bar
revealed that the grey-scale presentation was on a linear
scale. Echo gains of the system were held constant during
imaging. Continuous B-mode video recording were made
at a frame rate of 25 Hz, covering baseline, injection and
distribution over the blood pool of loaded and unloaded
BMM. Ultrasound movies were processed off-line using
ImagePro software (Media Cybernetics, Silverspring, MD,
USA) to extract the blood echo level for all frames at a
single pixel situated in the pulmonary artery, aorta or ca-
rotid artery. In a final processing stage the intensity wave-
form was smoothed (window 10 seconds) and converted
to dB with the average baseline level as reference.

In vivo interactions of leukocytes and BMM with the
endothelium
As described by others, in arteries leukocyte-endothelium
interactions are virtually absent without cytokine stimu-
lation [39]. The significance of TNF-a (tumor necrosis
factor) stimulation for leukocyte interaction with the
endothelium was verified by injecting intraperitoneally
TNF-a (1 pg/mL; PeproTec,London, UK) in 6 mice and
PBS in 6 mice (control) six hours before imaging. After in-
duction of anesthesia, the left carotid artery was surgically
exposed and the exposed tissues were kept moist with PBS
throughout the experiment. Blood leukocytes were visual-
ized in vivo by injecting Rhodamine 6G (1 pL, 0.02%; Mo-
lecular Probes, Karlsruhe, Germany) via the tail vein. After
20 minutes to allow binding of Rhodamine to leukocytes,
interactions of leukocytes with the carotid artery endothe-
lium were visualized in situ by means of a Zeiss Axiotech
microscope (20x water-immersion objective, Carl Zeiss,
Oberkochen, Germany) with a 100 W HBO mercury lamp
(Osram, Eichstitt, Germany), using epi-illumination. Exci-
tation wavelength for fluorescence imaging was 526 nm.
Video images were obtained from the anterior wall of the
common and the external carotid artery and at the level of
the carotid bifurcation. At each location two video record-
ings of 5 seconds were acquired at a frame rate of 25 Hz
and saved on hard disk.

In a subsequent series of experiments, we tested the
adhesion properties of both loaded and unloaded BMM,
labeled ex-vivo with Rhodamine 6G and washed three
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times with PBS. Four mice were stimulated six hours be-
fore imaging with intraperitoneal TNF-a. In 2 mice, 2.5
million loaded (2% v/v) and in another 2 mice unloaded
BMM were injected manually into the tail vein as a
bolus. The tail vein is more easily accessible and it pro-
vides a better dilution than the jugular vein, reducing
the likelihood of lung congestion [35]. Two minutes
after injection, interactions of the BMM with the carotid
artery endothelium were visualized in situ. The observa-
tion and recording procedure was the same as for the
native leukocytes (see above).

Video images of leukocytes and BMM interactions with
the artery wall were evaluated off-line, using ImagePro
software. The number of BMM rolling over or adhering to
the endothelium was determined per recording by two in-
dependent observers (LK and KR). Rolling distance was
defined as the distance a rolling cell covered within the 5-
second duration of the video recording and within the field
of view, before leaving the field of view or before detaching
from the endothelium. Rolling velocity was defined as the
rolling distance divided by the transit time (number of
frames divided by the frame rate). Firm adhesion was de-
fined as a cell remaining stationary during the 5-second re-
cording time. Cells attaching or rolling only very briefly
(<2 s) were not taken into account in the number of roll-
ing or firmly adhering cells, neither were they included in
the assessment of rolling distance and velocity, as they
likely do not contribute to accumulation and, hence, en-
hancement of the echo signals at the site of action.

Statistical analysis
Data are presented as median and range, unless stated
otherwise. Differences in distribution variance were tested
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by F-test. Two-sample, two-sided Student t-tests, assuming
unequal variances, were performed on the data to detect
statistical differences in cell diameter distributions. Differ-
ences in BMM rolling and in adhesion behavior were eval-
uated with the Mann—Whitney U-test. Calculations were
performed using GraphPad Prism (GraphPad Software
Inc, San Diego, CA, USA) and Excel (Microsoft, Redmond,
WA, USA) software. A p-value <0.05 was considered sta-
tistically significant.

Results

Cell diameter

BMM diameter was significantly larger (p <0.001) and
more disperse (p <0.001) than that of blood leukocytes
(Figure 1). There was a borderline significant difference
in average diameter (p = 0.049) between 2% PFH loaded
(n=200, mean + SD =177+ 2.8 pum, median 17.4 um)
and unloaded BMM (n=200, 17.1+3.8 pm, median
16.6 pm), but the distribution width of the loaded cells
was smaller than that of the unloaded ones (p <0.001).
Overall, both loaded and unloaded BMM were larger than
blood leukocytes (n=200, mean+SD=14.0+1.0 pm),
but the distributions were overlapping in the 12—-16 um
diameter range.

Echo enhancement in blood

Ultrasound B-mode images showed no blood echo en-
hancement in the pulmonary artery after injection of
unloaded BMM into the jugular vein (n = 8).

In 3 mice we injected 5 to 7 million 2% loaded BMM.
Of these three mice, one got unintentionally a spurious
BMM injection, while for the other the experiment was
terminated because of problems with the anesthesia set-
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Figure 1 Diameter distribution of mouse blood leukocytes (N, neutrophil; L, lymphocyte; M, monocyte) and cultured bone marrow
macrophages (BMM). Histograms show a broad diameter distribution for both PFH loaded (2%) and unloaded (0%) BMM compared to blood
leukocytes. The bracket on the x-axis indicates the approximate diameter range of blood monocytes. n = 200 cells, for each group.
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up. In the third mouse (7 million BMM, slow infusion)
we observed a notable transient echo enhancement in
the pulmonary artery (Figure 2).

4 Mice got an injection of 4% loaded BMM with a
dose ranging from 2-15 million cells. Slow infusion of 2
million loaded cells did not induce echo enhancement in
the aorta (mouse 1), but 7 million loaded cells (slow in-
fusion) caused an increase in echo level of 0.8 dB in the
pulmonary artery and of 0.2 dB in the aorta (mouse 2).
Slow injection of a high dose of 15 million 4% loaded
BMM (mouse 3) temporarily enhanced the blood echo-
genicity in the pulmonary artery with 9 dB (Figure 3, left
panel) and induced a small, but detectable enhancement
in the aorta (1 dB peak). Also a bolus injection of a large
number (15 million) of 4% loaded BMM (mouse 4)
caused a substantial, but transient blood echogenicity
enhancement of 2 dB in the common carotid artery of
one mouse (Figure 3, right panel). The above results in-
dicate that at least part of the injected BMM do pass the
pulmonary circulation and arrive on the arterial side.

In vivo interactions of leukocytes and BMM with the
endothelium

As described by others [39], in arteries leukocyte-endothelium
interactions are regulated by cytokine stimulation. Intravital
microscopy of carotid arteries showed that in unstimulated
mice (n = 6, peritoneal PBS injection), an average count
of 1 adhering native leukocytes (median 1, range 0-5) was
observed (36 recordings in total). TNF-a stimulation (n = 6;
36 recordings) resulted in adhesion of significantly (one-
sided p =0.01) more leukocytes (median 4, range 0-45) to
the endothelium.

Interactions of injected BMM with the TNF-a stimu-
lated endothelium (totaling 36 loaded and 30 unloaded
BMM) are illustrated in Figure 4. The trajectory could
be identified over the image for 21 PFH loaded and 7
unloaded BMM. PFH loading had no significant effect
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on the rolling velocity or rolling distance of BMM
(Table 1). Similarly, there was no difference in the inci-
dence of stably adhering cells (8 loaded and 5 unloaded
BMM). The number of cells attaching or rolling only
very briefly during a recording was 11 for PFH loaded
BMM and 13 for unloaded BMM.

All 16 animals survived and were sacrificed after im-
aging, indicating that the applied dose (2.5 million for
unloaded and 2% v/v loaded BMM) was tolerated by the
animals.

Discussion

The present pilot study was performed to investigate
in vivo the potential of monocytes to act as ultrasound
contrast agent. Intravenously administered perfluorohex-
ane loaded bone marrow macrophages were able to pass
the lung circulation in mice. Most importantly, we ob-
served that loaded macrophages exhibited rolling and se-
lective adhesion behavior at the TNF-a stimulated
endothelium of the carotid artery wall, similar to
unloaded macrophages.

The echogenicity of emulsions with a sub-micron diam-
eter is limited; hence, those particles are unsuited to act as
a blood pool contrast agent. Despite the size limitation, we
were able to visualize loaded BMM (2% and 4% v/v) in the
pulmonary artery, even though the background level is
quite high (Figure 2). However, in the carotid arteries they
were only visible after bolus injection of a high dose of
BMM with maximal PFH loading (4% v/v). The enhanced
echogenicity can be explained by the accumulation of
echogenic material within the macrophage, resulting in a
diameter increase of 0.6 pm corresponding to a volume in-
crease of about 10%. As a consequence we are no longer
dealing with sub-micron particles but with a conglomer-
ation. A major advantage of loading macrophages with
small particles is that the loaded macrophages retain
deformability. This is essential for the passage through the
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microcirculation and for the adherence to the activated
endothelium by maximizing the contact area and lowering
the exposure to the prevailing shear stress.

Monocytes and other leukocytes are naturally equipped
to roll on and selectively adhere to activated endothelium
and to resist physiological shear stresses in large- and
middle-sized arteries. Bonds formed between endothelial
selectins and integrins on the one hand, and monocyte
ligands on the other may result in rolling and eventually
adhesion [40,41]. These observations corroborate our
findings that in the mouse carotid artery, native leukocyte
adhesion is indeed enhanced by TNF-« stimulation. Simi-
larly, both perfluorohexane loaded and unloaded bone
marrow macrophages roll on and adhere to the artery wall
through the interaction with selectins and integrins, which
are expressed after TNF-a stimulation. In a previous
study, we showed that PFH-loading of bone marrow mac-
rophages did not affect the presence of PSGL-1, VLA-4,
Mac-1 and LFA-1 on the cell surface, nor their ability to
adhere to TNF-a stimulated endothelium under stationary
(no shear) conditions [26]. The present study shows that
in the in vivo situation perfluorohexane loaded and
unloaded bone marrow macrophages also comply with
this notion. Moreover, loading BMM with perfluorohex-
ane did not degrade adhesion affinity as loaded BMM ex-
hibited similar stable adhesion as unloaded BMM (8 and 5
BMM, respectively).

As reported, the PFH loaded BMM show only for ex-
tremely high doses, administered in a short time, a not-
able increase in blood pool echogenicity. Consequently,
the enhanced echogenicity by local accumulation of PFH
loaded BMM at stimulated sites will not be obscured by
the echo level of the blood pool.

The low number of adhering and rolling BMM observed
in the present study is likely a consequence of the protocol
followed. To avoid ambiguity about the extent and homo-
geneity of local stimulation we used systemic application
of TNF-«, which inherently enhances adhesion through-
out the body and therefore reduces the number of BMM
available for adhesion within the region of our interest.
Moreover, the relatively large amount of native blood cells
already adhering to the stimulated wall before the BMM
are injected, occupy available adhesion sites. Moreover, in
the current study the accumulation time was less than
10 minutes because of the acute nature of the experi-
ments. Allowing prolonged exposure, which presents no
problems for the stable emulsions, would surely contribute
to accumulation.

A good alternative for macrophages derived from bone
marrow might be isolated blood monocytes, because they
are smaller than cultured macrophages, which lowers the
chance of being captured in the lung and may decrease
the sensitivity to shear stress. A limitation of using isolated
monocytes, however, would be the number of donor mice

no TNF-a

Figure 4 Intravital fluorescence microscopy images of the mouse carotid artery. Interactions of leukocytes are virtually absent in unstimulated
mice (left). TNF-a stimulation effectively increases the number of leukocytes interacting with the endothelium (right). In the right picture the left wall of
the artery is out of focus. Leukocytes are Rhodamine labeled. Scale bar =50 um.
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Table 1 In vivo, loaded and unloaded BMM behave
similarly considering rolling velocity and rolling distance
(reported as mean £ SD)

Unloaded BMM Loaded BMM (2% v/v) P

n 7 21
Rolling velocity (um/s) 33+ 14 39+ 14 0.18
Rolling distance (um) 130£55 114+16 038

needed to perform an ultrasound molecular imaging study
in mouse models of atherosclerosis. Bone marrow isolation
allows retrieval of a far higher number of BMM from a
single mouse. In humans, ex-vivo radio-labeled leukocytes
are in use clinically for scintigraphic imaging of inflamma-
tory and infectious processes [24,25], where leukocytes are
obtained from the (same) patient.

Conclusions

The current proof of principle study clearly demonstrates
that, in vivo, PFH-loaded macrophages circulate and are
able to roll and adhere selectively to stimulated carotid
endothelium under physiological shear stress conditions.
Therefore, we conclude that PFH-loaded monocytes may
have a potential to be used as a targeted ultrasound con-
trast agent. Further investigations are required to gain
more insight into the relationship between local expres-
sion of molecular markers on endothelial surfaces and the
local concentration and diameter of adhered ultrasound
contrast agents (i.e. loaded monocytes).
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